

Tetrahedron 59 (2003) 6559–6567

TETRAHEDRON

Rhodium-catalyzed highly selective thioformylation of acetylenes with thiols and carbon monoxide

Jun-ichi Kawakami,^a Mitsuhiro Takeba,^b Ikuyo Kamiya,^c Noboru Sonoda^d and Akiya Ogawa^{c,*}

a Chemical Development Laboratories, Takeda Chemical Industries, Ltd., 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan berkesi di berkes

 $^{\rm b}$ Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan ^d

 $^{\text{d}}$ Department of Applied Chemistry, Faculty of Engineering, Kansai University, Suita, Osaka 564-0073, Japan

Received 31 March 2003; accepted 27 June 2003

Abstract—Highly regioselective thioformylation of terminal acetylenes with thiols and carbon monoxide has been developed by the use of rhodium(I) complexes as the catalyst: formyl and thio groups are introduced into the terminal and inner positions of acetylenes, respectively. The thioformylation is performed in the presence of a catalytic amount of rhodium(I) complexes, such as $RhH(CO)(PPh₃)$ ₃, $RhCl(PPh₃)$ ₃, and RhCl(CO)(PPh₃)₂, under the pressure of CO (3 MPa) at 120°C in CH₃CN to provide β -thio- α , β -unsaturated aldehydes in good yields. This thioformylation can be applied to a variety of terminal acetylenes and aromatic thiols. A mechanistic proposal includes the formation of the rhodium sulfide complex as the key species.

 $© 2003 Elsevier Ltd. All rights reserved.$

1. Introduction

Transition-metal-catalyzed reactions with main group compounds, such as organic silicon,^{[1](#page-7-0)} tin,^{[2](#page-7-0)} and boron^{[3](#page-7-0)} compounds, have been extensively investigated and have been established for effecting a wide range of synthetic reactions. In contrast, the use of organosulfur compounds in transition-metal-catalyzed reactions has been largely unexplored, despite the fact that sulfur compounds easily react with transition metal compounds to give a variety of sulfur-coordinated metal complexes. 4 In general, sulfur compounds are believed to bind strongly to transition metal compounds and therefore make the catalytic reactions ineffective. Perhaps widespread prejudice that 'sulfur compounds are catalyst poisons' has precluded investigation in this area. However, several works concerning transition-metal-catalyzed reactions of sulfur compounds strongly suggested the efficacy of transition-metal-catalyzed synthetic reactions of sulfur compounds.^{[5,6](#page-7-0)} For example, we have developed highly selective transition-metal-catalyzed additions of organic thiols or disulfides to acetylenes, providing a series of vinylic sulfides in good yields with excellent regio- and/or stereoselectivities.^{[5,7](#page-7-0)} With regard to the transition-metal-catalyzed reaction of thiols with carbon monoxide, the $Co_2(CO)_{8}$ -catalyzed desulfurizative carbonylation of thiols was reported as a series of pioneering work.^{6k-m} Furthermore, the $Co_2(CO)_8$ -catalyzed carbonyl-

* Corresponding author. Tel./fax: $+81-742-20-3979$;

e-mail: a.ogawa@cc.nara-wu.ac.jp

ation of organic diselenide or ditelluride has been developed by Uemura, Ohe, and co-workers.^{[8](#page-7-0)} After these works, a number of transition-metal-catalyzed reactions of various organosulfur compounds have been developed successfully: $1c,9-13$ e.g. thioboration, ^{[10](#page-7-0)} thiosilylation, $11a$ thiophos-phorylation,^{[11b](#page-7-0)} thioesterification,^{[11c](#page-7-0)} S-propargylation or allylation of thiols, 12b,c 12b,c 12b,c and carbothiolation, 13s 13s 13s etc.

We have further discovered the first example of $RhH(CO)(PPh₃)₃$ -catalyzed 'thioformylation' of acetylenes with thiols and carbon monoxide $(Eq. (1))$.^{[14](#page-8-0)} This thioformylation exhibits the excellent regioselectivity where carbon monoxide and thio groups are introduced selectively into the terminal and inner positions of acetylenes, respectively.

$$
R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R
$$

In this paper, we describe full details of the rhodiumcatalyzed carbonylative addition of thiols to acetylenes under the pressure of carbon monoxide. We also report some mechanistic considerations of this carbonylation. This reaction provides a general method for the regioselective introduction of thiols and carbon monoxide into acetylenes.

2. Results and discussion

2.1. $RhCl(PPh₃)₃$ -Catalyzed thioformylation of 1-octyne with benzenethiol and carbon monoxide

Our recent investigations on catalytic hydrothiolation

Keywords: thioformylation; rhodium; thiols; carbon monoxide; acetylenes; Wilkinson catalyst.

^{0040–4020/\$ -} see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4020(03)01061-5

 \sim

Dheu

Reaction conditions: 1 (1 mmol), 2 (1 mmol), CO (3 MPa), RhCl(PPh₃)₃ (2 mol%), solvent (1 mL), 100°C, 15 h. (2 mol%), solvent (1 mL), 100°C, 15 h.
^a Determined by ¹H NMR.

reactions have proved that Wilkinson catalyst $(RhCl(PPh₃)₃)$ is effective for *anti*-Markovnikov addition of benzenethiol to terminal acetylenes with excellent stereoselectivity $(syn\text{-}addtion).$ ^{[7](#page-7-0)} It might be expected that this catalyst also exhibits a catalytic activity toward the desired carbonylative addition reaction of thiols to acetylenes in the presence of carbon monoxide. As mentioned in Table 1, the RhCl(PPh₃)₃-catalyzed reaction of 1-octyne (1, 1 mmol) with benzenethiol (2, 1 mmol) and carbon monoxide $(3 MPa)$ in CH₃CN provided the desired thioformylation product 3a, although the yield was not so high (entry 1). Next, we investigated this $RhCl(PPh₃)₃$ catalyzed thioformylation in detail by varying the reaction conditions. At first, the influence of the solvents on this thioformylation was examined (Table 1). The reaction in DME gave 3a in 25% yield (entry 2), but the selectivity was lower compared with those in CH3CN (entry 1). The use of HMPA, dioxane, and toluene as the solvent resulted in decrease of both the yield and the selectivity (entries 3–5).

Table 2 indicates the $RhCl(PPh_3)$ ₃-catalyzed carbonylation of 1-octyne with PhSH and CO in $CH₃CN$ under the conditions varying the reaction temperature, reaction time, the pressure of CO, and the molar ratio of acetylene/thiol. As can be seen from entries $1-3$, higher temperature

Reaction conditions: 1 (1 mmol), 2 (1 mmol), CO (3 MPa), RhH(CO)(PPh₃)₃ (2 mol%), solvent (1 mL), 100°C, 15 h. $^{\rm a}$ Determined by $^{\rm 1}$ H NMR.

 $(100^{\circ}C)$ and prolonged reaction time (42 h) increased the yield of the thioformylation product (3a) (34%). Diminishing the CO pressure resulted in the decrease of the yield of 3a (entries 2 and 4).

On the other hand, the increase in the molar ratio of acetylene/thiol (1/2) led to the increase in the yield of 3a. For example, when 3 equiv. of 1-octyne was employed, the desired 3a was obtained in 63% yield (entry 5). Numerous attempts have been made to optimize the reaction conditions, and finally the yield of 3a was increased to 70% ($E/Z = 68/32$) when the RhCl(PPh₃)₃-catalyzed reaction was carried out by use of 1.5 equiv. of 1-octyne at 120° C for 20 h under the pressure of CO (3 MPa) (entry 8).

2.2. $RhH(CO)(PPh_3)$ ₃-Catalyzed thioformylation of acetylenes with thiols and carbon monoxide

As well as $RhCl(PPh_3)$ ₃, $RhH(CO)(PPh_3)$ ₃ is found to work as an excellent catalyst for the desired thioformylation of 1-octyne (1) with PhSH (2) and CO. Table 3 indicates the influence of solvents on this $RhH(CO)(PPh₃)₃$ -catalyzed thioformylation. The use of $CH₃CN$, DME, THF and pyridine as the solvent led to the formation of the thioformylation product 3a in moderate yields (entries

Table 2. RhCl(PPh₃)₃-catalyzed reaction of 1-octyne with benzenethiol and carbon monoxide

Entry	1/2	CO (MPa)	Temperature $(^{\circ}C)$	Time (h)	Yield $(\%)^a$			
					$3a$ (E/Z)			
			80	36	27 (78/22)	4		10
			100	15	25(68/32)		Trace	
3			100	42	34 (71/29)		Trace	
4		1.5	100	15	12(67/33)		Trace	
5			100	15	63 (56/44)			13
6			100	42	57 (58/42)	h.	Trace	
\neg _b	1.5		120		46 (43/57)	Trace	Trace	Trace
8 ^b	1.5		120	20	70 (68/32)	Trace		Trace
9 ^b	1.5		120	42	46 (28/72)	4		
10 ^b	1.5		140	20	42 (26/74)		Trace	10

Reaction conditions: 1 (1–3 mmol), 2 (1 mmol), CO (1.5–3 MPa), RhCl(PPh₃)₃ (2 mol%), CH₃CN (1 mL). ^a Determined by ¹H NMR.

 $^{\prime\prime}$ C₆H₁₃-

Table 4. Influence of reaction temperature on $RhH(CO)(PPh₃)₃$ -catalyzed reaction

Entry	Temperature $(^{\circ}C)$	Time (h)	Yield $(\%)^a$			
			$3a$ (E/Z)		5	
	100	15	41 (56/44)	4	$\mathcal{D}_{\mathcal{L}}$	2
$\overline{2}$	100	40	35 (71/29)	10		
3 ^b	110	15	58 (59/41)	5	5	Trace
4^{b} 5^{b}	120	5	57 (71/29)	3	7	Trace
	120	15	60 (77/23)	2	5	17
6 ^b	140	15	41 (39/61)	\overline{c}	4	3

Reaction conditions: 1 (1 mmol), 2 (1 mmol), CO (3 MPa), RhH(CO)(PPh₃)₃ (2 mol%), CH₃CN (1 mL).
^a Determined by ¹H NMR.

 h RhH(CO)(PPh₃)₃ (3 mol%).

1–4). In particular, the reaction in CH_3CN realized a better selectivity of 3a. On the other hand, the reaction in pyridine afforded not only 3a (46%) but also Markovnikov adduct 5 (35%) (entry 4).

Table 4 indicates the influence of the reaction temperature on this thioformylation, and the thioformylation product (3a) was found to be formed in 60% yield, when the reaction was carried out under carbon monoxide (3 MPa) at 120° C for 15 h. However, higher temperature $(140^{\circ}C)$ provided 3a in only 41% yield.

Furthermore, in the case of higher CO pressure, the yield of the thioformylation product 3a was increased (Table 5). In particular, the product 3a was obtained in 78% yield, when the reaction was conducted under 5 MPa of carbon monoxide (entry 4).

Thus, we next investigated the optimization of this thioformylation by employing the excess amounts of acetylenes (Table 6). Although the reaction at 80° C proceeded very slowly (entry 1), higher temperature (100 and 120° C) successfully provided 3a in 71 and 82% yields, respectively (entries 3 and 14). Much effort has been done to determine the optimized reaction conditions, and finally $RhH(CO)(PPh₃)₃$ is found to be an excellent catalyst for the thioformylation of 1-octyne with benzenethiol and carbon monoxide $(1/2=1.5, 120^{\circ}\text{C}, 5 \text{ h}, 3 \text{ MPa}, \text{ see entry 14}).$ The $RhH(CO)(PPh₃)₃$ -catalyzed thioformylation was also sensitive to the reaction concentration. In the cases of both higher and lower reaction concentrations, the yield was decreased (entries 5, 8, 9, 12, and 13).

With respect to the stereoisomers of $3a$ (Z and E), the Z isomer was a kinetic product and was gradually isomerized

Table 5. Influence of CO pressure on $RhH(CO)(PPh_3)$ ₃-catalyzed reaction

Entry	CO (MPa)	Yield $(\%)^a$				
		$3a$ (<i>E</i> / <i>Z</i>)				
		49 (29/71)	6		10	
$\overline{2}$	1.5	71 (20/80)		14	Trace	
3	3	72 (69/31)	8	4	Trace	
$\overline{4}$		78 (38/62)	6	6	Trace	

Reaction conditions: 1 (3 mmol), 2 (1 mmol), CO (1–5 MPa), RhH(CO)(PPh₃)₃ (2 mol%), CH₃CN (1 mL), 100°C, 15 h.

Determined by ¹H NMR.

Table 6. $RhH(CO)(PPh_3)$ ₃-Catalyzed reaction of 1-octyne with benzenethiol and carbon monoxide $DLI(00)(DDL)$ (0

Reaction conditions: $1(1.5-3 \text{ mmol})$, $2(1 \text{ mmol})$, CO (3 MPa) , RhH(CO)(PPh₃)₃ (entries 1–5, 7–9; 2 mol%, entries 10–14; 3 mol%),
CH₂CN (1 mL)

 $\frac{1}{2}$ Determined by ¹H NMR.
b CH₃CN (3 mL).

^c RhH(CO)(PPh₃)₃ (1 mol%).
^d CH₃CN (2 mL). e CH₃CN (0.5 mL).

to thermodynamically more stable E isomer during the reaction (entries $2-5$ and $7-14$). For example, the E/Z ratio of 3a was 23/77 in the reaction at 100° C for 5 h, whereas the E/Z ratio changed to 69/31 when the reaction continued for additional 10 h (entries 3 and 4). Interestingly, however, when the amount of catalyst was decreased, the reaction gave Z isomer preferentially despite the reaction time was 15 h (entry 6). By using the thioformylation product $3a(Z)$ only) formed from 1-octyne, isomerization (Z) -3a to (E) -3a was examined under the thioformylation reaction conditions (Eq. (2)). As a result, isomerization of Z to E occurred with relative ease (E/Z ratio of 3a was 76/24).

$$
{}^{7}C_{6}H_{13} \longrightarrow CHO
$$
\n
$$
O(3 MPa)
$$
\n
$$
O(3 MPa)
$$
\n
$$
PhS
$$
\n
$$
PhS
$$
\n
$$
PhS + (1 mmo1)
$$
\n
$$
3a, only Z isomer
$$
\n
$$
CH_{3}CN, 100 °C, 15 h
$$
\n
$$
3a, E/Z = 76/24
$$
\n
$$
(2)
$$

[Table 7](#page-3-0) indicates the influence of additives on the $RhH(CO)(PPh₃)₃$ -catalyzed thioformylation. Although the addition of Et_3N to the rhodium-catalyzed silylformylation was reported to improve the reaction rate and the yield of the product,^{[15](#page-8-0)} the present thioformylation was sharply retarded (entry 1). The addition of water (1 equiv.) did not affect the thioformylation (entry 2). Interestingly, the use of $RhH(CO)(PPh_3)$ ₃ with $P(OPh_3)$ ₃ led to the increase of the yield of the product 3a, while the reaction with dppe was less effective (entries 3 and 4).

Table 7. Influence of additives on $RhH(CO)(PPh₃)₃$ -catalyzed thioformylation

Entry	1/2	Additive	Yield $(\%)^a$				
			$3a$ (E/Z)		5		
		Et_3N (4 mol%)	Trace		2	θ	
$\overline{2}$	3	$H2O$ (1 equiv.)	57 (46/54)	6	2	Trace	
3	1.5	$P(OPh)$ ₃ (4 mol%)	68 (78/22)	6	Trace	Trace	
$\overline{4}$	1.5	dppe (3 mol\%)	40 (50/50)	7	4	Trace	
.5	1.5	None	51 (67/33)	6	4	Trace	

Reaction conditions: $1(1-3)$ mmol), $2(1)$ mmol), $CO(3)$ MPa), $RhH(CO)(PPh_3)$ ₃ (2 mol%), CH₃CN (1 mL), 100°C, 15 h. $^{\circ}$ Determined by ¹H NMR.

As mentioned already, the thioformylation product 3a was obtained in high yield when the $RhCl(PPh₃)₃$ or $RhH(CO)(PPh₃)₃$ -catalyzed reaction was carried out using 1-octyne (1.5 equiv.) under 3 MPa of carbon monoxide at 120° C (Table 8, entries 1 and 2). However, the $RhCl(PPh₃)₃$ -catalyzed thioformylation required prolonged reaction time (20 h), compared with the RhH(CO)(PPh₃)₃catalyzed one. This is most probably because $RhH(CO)(PPh_3)$ ₃ can easily generate the active catalyst $(Rh(SPh)(CO)(PPh_3)_{2})$ with the evolution of molecular hydrogen (see; Eq. (4)), and RhCl(PPh₃)₃ might require longer time to produce the active catalyst. We also examined the reaction using $RhCl(CO)(PPh_3)$ and $[Rh(CO)₂Cl]_2$ as the catalyst under the above optimized conditions. The $RhCl(CO)(PPh₃)₂$ -catalyzed thioformylation took place regioselectively to provide 3a in good yield. On the other hand, $[Rh(CO)_2Cl]_2$ was ineffective (entry 4). These results suggest that the presence of phosphine ligands is important in this thioformylation.

[Table 9](#page-4-0) summarizes the representative results of the $RhH(CO)(PPh_3)$ ₃-catalyzed thioformylation using various thiols and terminal acetylenes. The thioformylation with aromatic thiols such as p-fluorobenzenethiol and p-methylbenzenethiol proceeded smoothly to give the corresponding products 3b and 3c in good yield, respectively (entries 2 and 3). However, the thioformylation of aliphatic thiols like dodecanethiol required prolonged reaction time, providing 3d in low yield (entry 4). Aliphatic acetylenes can be employed as the substrates for this thioformylation successfully (entries $5, 6, 8-10$). Functionalities such as OH and CN are tolerant to this thioformylation (entries 6 and 9). Although the thioformylation of aromatic acetylenes took place regioselectively, the Markovnikov adduct of benzenethiol 7 was also produced in 28% yield (entry 7).

Starting from the same substrates (i.e. acetylene, thiol, and

Table 8. Rhodium-catalyzed thioformylation of 1-octyne with benzenethiol and carbon monoxide

Entry	Catalyst	3a, yield $(\%)^a$	EIZ.
	RhH(CO)(PPh ₃) ₃	82	13/87
$\overline{2}$	RhCl(PPh ₃) ₃	$46(70^b)$	$43/57(68/32^{b})$
3	$RhCl(CO)(PPh_3)$	68	39/61
$\overline{4}$	[Rh(CO),Cl]	19	57/43

Reaction conditions: 1 (7.5 mmol), 2 (5 mmol), CO (3 MPa), Rh catalyst (3 mol%), CH₃CN (5 mL), 120°C, 5 h.
^a Determined by ¹H NMR.

 b Reaction time: 20 h.</sup>

CO), the thioformylation via a radical pathway was reported, which indicated the different regioselectivity, i.e. thio and formyl groups are introduced into terminal and inner positions of terminal acetylenes: PhS·attacks the terminal carbon of alkynes to give β -alkylthio alkenyl radical and then the reaction of this radical with carbon monoxide followed by hydrogen abstraction from thiol give the regioselective thioformylation products (Eq. (3)).^{[16](#page-8-0)} Accordingly, both methods, i.e. the rhodium-catalyzed and the radical-mediated thioformylations, are complementary to each other for regioselective synthesis of β -thio- α, β unsaturated aldehydes from acetylenes.

2.3. Mechanistic considerations of $RhH(CO)(PPh_3)_{3}$ catalyzed thioformylation of acetylenes with thiols and carbon monoxide

To get insight into the reaction pathway for this thioformylation, stoichiomertric reaction of $RhH(CO)(PPh₃)$ ₃ with benzenethiol was examined. The equimolar reaction of $RhH(CO)(PPh₃)$ ₃ with PhSH at 15[°]C in acetonitrile under argon atmosphere afforded a yellow solid (8) with the evolution of molecular hydrogen. 1H NMR spectra indicated the disappearance of the signal at δ -9.71 assigned to the hydride of $RhH(CO)(PPh₃)₃$.^{[17](#page-8-0)} The IR spectra of the yellow solid showed that the CO absorption $(1922 \text{ cm}^{-1})^{17}$ $(1922 \text{ cm}^{-1})^{17}$ $(1922 \text{ cm}^{-1})^{17}$ of RhH(CO)(PPh₃)₃ disappeared and new carbonyl absorption appeared at 1969 $cm⁻¹$. These results and elemental analysis of the yellow solid indicate unambiguously that the formed complex is $Rh(SPh)(CO)(PPh_3)_2$ (Eq. (4)).^{[18](#page-8-0)} The catalytic reaction of 1-octyne (1) with benzenethiol and CO in the presence of 3 mol% of complex 8 afforded the thioformylation product 3a in good yield (Eq. (5)).

HRh(CO)(PPh₃)₃+PhSH

\n
$$
CH_{3}CN
$$
\n
$$
15 \,^{\circ}\text{C}, 2 \, \text{h}
$$
\n8

\n7C₆H₁₃—H₂+PhSH + CO

\n
$$
1.5 \, \text{equiv}
$$
\n
$$
4) \, \text{Pc}_6H_{13}
$$
\n8

\n8

\n9

\n1.5 \, \text{equiv}

\n
$$
3 \, \text{MPa}
$$
\n
$$
120 \, ^{\circ}\text{C}, 5 \, \text{h}
$$
\n1.6 \, \text{exp}(\text{F})

\n
$$
3.66 \, \text{W} \, [\text{E} / \text{Z} = 9/91]
$$
\n1.7 \, \text{exp}(\text{F})

\n1.8 \, \text{exp}(\text{F})

\n
$$
3.8 \, \text{MPa}
$$
\n
$$
120 \, ^{\circ}\text{C}, 5 \, \text{h}
$$
\n1.9 \, \text{Pb}

\n1.10 \, \text{Pb}

\n1.11 \, \text{Pc}

\n
$$
3.6 \, \text{Pc}
$$
\n
$$
[10 \, \text{Pb}]
$$
\n1.12 \, \text{Pd}

\n1.13 \, \text{Pd}

\n1.14 \, \text{Pd}

\n1.15 \, \text{Pd}

\n1.16 \, \text{Pd}

\n1.17 \, \text{Pd}

\n1.18 \, \text{Pd}

\n1.19 \, \text{Pd}

\n1.10 \, \text{Pd}

\n1.10 \, \text{Pd}

\n1.11 \, \text{Pd}

\n1.12 \, \text{Pd}

\n1.13 \, \text{Pd}

\n1.14 \, \text{Pd}

\n1.15 \, \text{Pd}

\n1.16 \, \text{Pd}

\n

On the other hand, the reaction of $RhH(CO)(PPh₃)$ ₃ with excess amounts of PhSH (5 equiv.) at 15° C in acetonitrile under argon atmosphere gave a brown solid $(8')$. The reaction of 1-octyne (1) with benzenethiol and CO in the presence of 3 mol% of complex $\mathbf{8}'$ did not provide 3a. These results indicate that complex $\mathbf{8}'$ has no catalytic activity toward the thioformylation. Accordingly, the complex 8

Table 9. RhH(CO)(PPh₃)₃-Catalyzed thioformylation of acetylenes with thiols and carbon monoxide

$$
R1\n\longrightarrow R1\n\longrightarrow R2SH + CO
$$
\n
$$
R1\n\longrightarrow R1\n\longrightarrow CHO
$$
\n
$$
120°C, 5 h
$$
\n
$$
R2S
$$
\n
$$
3 MPa
$$

Reaction conditions: acetylene (7.5 mmol), thiol (5 mmol), CO (3 MPa), RhH(CO)(PPh₃)₃ (3 mol%), CH₃CN (5 mL), 120°C, 5 h.

formed at the initial stage may act as an active catalyst in a catalytic cycle of thioformylation.

Since the $RhH(CO)(PPh₃)₃$ -catalyzed thioformylation gave $4(2-10\%)$ as a byproduct, the reaction of 4 with 1-octyne under 3 MPa of carbon monoxide in the presence of $RhH(CO)(PPh_3)$ ₃ (3 mol%) at 120°C for 15 h was examined. However, the attempted reaction did not afford the thioformylation product $3a$ (Eq. (6)).^{[19](#page-8-0)} The use of benzenethiol, instead of 1-octyne, resulted in the recovery of 4 (Eq. (7)).

$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}S
$$
 SPh
$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}H_{13}
$$
 SPh
$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}
$$
 Sph
$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}
$$
 Sph
$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}
$$
 Sph
$$
{}^{n}C_{6}H_{13} \longrightarrow H_{n}C_{6}
$$
 (6)

Moreover, the reaction of 5 under 3 MPa of carbon monoxide in the presence of $RhH(CO)(PPh₃)$ ₃ (3 mol%) at 120° C for 15 h did not provide $3a$ (Eq. (8)). These results suggest that both 4 and 5 are not precursors for this thioformylation product 3a.

$$
{}^{7}C_{6}H_{13} \vee H_{15} + CO \xrightarrow{\text{RhH(CO)(PPh3)3}} {}^{7}C_{6}H_{13} \vee H_{15} \vee CHO
$$
\n
$$
= 5 \quad 3 \text{ MPa} \quad CH_{3}CN, 120 \text{ °C}, 15 \text{ h} \qquad \text{3a}
$$
\n
$$
(8)
$$

A plausible mechanism for this thioformylation is shown in Scheme 1. The reaction includes the formation of the rhodium sulfide complex 9 as the key species. Acetylenes coordinate to the complex and then undergo regioselective thiorhodation to give the vinylic rhodium complex 10. The CO-insertion to give the acylrhodium complex 11, followed by the reaction with PhSH affords the thioformylation product with regeneration of the rhodium sulfide complex 9.

3. Conclusion

In summary, we have developed a highly selective thioformylation of acetylenes with thiols and carbon monoxide. In this reaction, the excellent regioselectivity is observed: thio and formyl groups are introduced selectively into the inner and terminal carbons of terminal acetylenes, respectively. Thioformylation compounds could be produced in good yields in the presence of a catalytic amount of rhodium(I) complexes, such as $RhH(CO)(PPh₃)₃$, $RhCl(PPh₃)₃$, and $RhCl(CO)(PPh₃)₂$. The results in this paper clearly demonstrate that transition-metal catalysts are very useful for the synthetic reactions of sulfur compounds.

4. Experimental

4.1. General comments

¹H NMR spectra were recorded on JEOL JNM-GSX-270 (270 MHz) and JEOL JNM-AL400 (400 MHz) spectrometers using CDCl₃ as the solvent with Me₄Si as the internal standard. 13C NMR spectra were taken on JEOL JNM-GSX-270 (68 MHz) and JEOL JNM-AL400 (100 MHz) spectrometers using CDCl₃ as the solvent. Chemical shifts in 13C NMR were measured relative to CDCl₃ and converted to δ (Me₄Si) value by using δ $(CDCl₃)$ =76.9 ppm. IR spectra were determined on a Perkin–Elmer Model 1600 spectrometer. Melting points were determined on a Yanagimoto micro melting point apparatus. Mass spectra were obtained on JEOL JMS-DX303 in the analytical section of our department. Elemental analyses were also performed there. All materials were obtained from commercial supplies and purified by distillation or recrystallization. Compounds 4–7 have been identified by comparison with the literature data.^{[5,7](#page-7-0)}

4.2. General procedure for the $RhH(CO)(PPh_3)_{3}$ catalyzed thioformylation of acetylenes with carbon monoxide and thiols

In a 50 mL stainless steel autoclave with a magnetic stirring bar under argon atmosphere were placed $RhH(CO)(PPh₃)₃$ (3 mol%), acetonitrile (5 mL), acetylene (7.5 mmol), and thiol (5 mmol). Carbon monoxide was purged for three times and then charged at 3 MPa. The reaction was conducted with magnetic stirring for 5 h upon heating at 120° C. After carbon monoxide was purged, the resulting mixture was filtered through Celite and concentrated in vacuo. Purification of the product was carried out by MPLC (silica gel, $25-40 \mu m$, length 310 mm, i.d. 25 mm, eluent hexane/ $Et₂O=4/1$).

4.2.1. 3-Phenylthio-2-nonenal (3a). [^Z isomer] yellow oil; ¹ ¹H NMR (270 MHz, CDCl₃) δ 0.83 (t, J=6.8 Hz, 3H), $1.23-1.25$ (m, 6H), 1.46 (quint., $J=7.4$ Hz, 2H), 2.22 (t, $J=7.4$ Hz, 2H), 6.18 (d, $J=7.8$ Hz, 1H), $7.37-7.49$ (m, 5H), 10.15 (d, J=6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.0, 22.4, 28.4, 28.6, 31.3, 37.1, 127.7, 129.0, 129.4, 130.7, 134.0, 164.4, 190.1; IR (NaCl) 2928, 2856, 1670, 1571, 1535, 1477, 1150, 749, 692 cm⁻¹; MS (EI), $m/z = 248$ (M⁺, 65). Anal. calcd for $C_{15}H_{20}OS$: C, 72.53; H, 8.12. Found: C, 72.61; H, 8.26. [*E* isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 0.91 (t, J=6.6 Hz, 3H), 1.29–1.47 (m, 6H), 1.75 (quint., $J=7.7$ Hz, 2H), 2.78 (t, $J=7.7$ Hz, 2H), 5.42 (d, $J=$ 7.8 Hz, 1H), $7.37-7.48$ (m, 5H), 9.78 (d, J=7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.0, 22.5, 28.9, 31.1, 31.4, 32.6, 121.9, 128.5, 129.9, 130.3, 135.6, 171.0, 186.8; IR (NaCl) 3059, 2955, 2929, 2746, 1661, 1580, 1557, 1150, 751, 691 cm⁻¹; MS (EI), $m/z = 248$ (M⁺, 66); HRMS calcd for $C_{15}H_{20}OS$ 248.1235, found 248.1225.

4.2.2. 3-p-Fluoro(phenylthio)-2-nonenal (3b). [Z isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 0.84 (t, J=7.1 Hz, $3H$), $1.13-1.26$ (m, 6H), 1.44 (quint., $J=7.3$ Hz, 2H), 2.18 $(t, J=7.6 \text{ Hz}, 2H), 6.16 (d, J=6.8 \text{ Hz}, 1H), 7.06-7.14 (m,$ 2H), 7.44–7.50 (m, 2H), 10.13 (d, J=6.4 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.0, 22.4, 28.4, 28.6, 31.3, 36.9,

116.7 (d, J=23 Hz), 125.7, 127.1, 136.4 (d, J=8.3 Hz), 163.4 (d, J=250 Hz), 164.2, 189.8; IR (NaCl) 2955, 2930, 2858, 1671, 1590, 1575, 1538, 1490, 1467, 1226, 1157, 1092, 835, 816 cm⁻¹; MS (EI), $m/z = 266$ (M⁺, 32). Anal. calcd for $C_{15}H_{19}FOS$: C, 67.64; H, 7.19. Found: C, 67.80; H, 7.28. [E isomer] Purification of (E) -2a' by MPLC resulted in the formation of a E/Z mixture of $2a'$ (9/1) due to similar polarities of the E and Z isomers. The following spectral date were therefore obtained by using the E and Z -mixture: ¹H NMR (270 MHz, CDCl₃) δ 0.91 (t, J=6.6 Hz, 3H), $1.30-1.44$ (m, 6H), 1.75 (quint., $J=7.6$ Hz, 2H), 2.78 (t, $J=7.8$ Hz, 2H), 5.36 (d, $J=7.8$ Hz, 1H), 7.09–7.17 (m, 2H), 7.43–7.48 (m, 2H), 9.78 (d, J=7.8 Hz, 1H); ¹³C NMR $(68 \text{ MHz}, \text{CDCl}_3)$ δ 14.0, 22.5, 28.9, 31.1, 31.4, 32.5, 117.3 $(d, J=23 \text{ Hz})$, 121.9, 123.8, 137.8 $(d, J=8.4 \text{ Hz})$, 164.0 $(d,$ $J=253$ Hz), 171.0, 186.9.

4.2.3. 3-p-Methyl(phenylthio)-2-nonenal (3c). [Z isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 0.83 (t, J=6.8 Hz, 3H), $1.12-1.30$ (m, 6H), 1.44 (m, 2H), 2.19 (t, $J=7.8$ Hz, 2H), 2.37 (s, 3H), 6.14 (d, J=6.8 Hz, 1H), 7.18 (d, J= 7.8 Hz, 2H), 7.32 (d, $J=7.8$ Hz, 2H), 10.14 (d, $J=6.8$ Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.0, 21.2, 22.4, 28.4, 28.6, 31.3, 36.9, 126.8, 126.9, 130.2, 134.3, 139.5, 165.2, 189.8; IR (NaCl) 3023, 2955, 2928, 2858, 2734, 1671, 1575, 1537, 1492, 1456, 1381, 1150, 1090, 1018, 811, 725, 673 cm⁻¹; MS (EI), $m/z = 262$ (M⁺, 49). Anal. calcd for $C_{16}H_{22}OS$: C, 73.23; H, 8.45. Found: C, 73.14; H, 8.53. [E isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 0.91 (t, $J=6.8$ Hz, 3H), $1.33-1.39$ (m, 6H), 1.75 (quint., $J=7.4$ Hz, $2H$), 2.39 (s, $3H$), 2.77 (t, $J=7.8$ Hz, $2H$), 5.39 (d, $J=8.1$ Hz, 1H), 7.23 (d, J=8.1 Hz, 2H), 7.34 (d, J=8.1 Hz, 2H), 9.77 (d, J=8.1 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.0, 21.4, 22.5, 29.0, 31.2, 31.5, 32.6, 121.8, 124.6, 130.8, 135.5, 140.7, 171.6, 187.0; IR (NaCl) 3024, 2955, 2927, 2857, 2745, 1660, 1582, 1557, 1493, 1463, 1456, 1394, 1180, 1150, 1119, 1018, 846, 812, 707 cm⁻¹; MS (EI), $m/z = 262$ $(M^+$, 20). Anal. calcd for C₁₆H₂₂OS: C, 73.23; H, 8.45. Found: C, 73.93; H, 8.53.

4.2.4. 3-Dodecylthio-2-nonenal (3d). [E/Z mixture] yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 0.86-0.90 (m, 6H), 1.18–1.26 (m, 24H), 1.59–1.69 (m, 4H), 2.43–2.85 (m, 4H), 6.06 (d, J=6.9 Hz, 1H), 10.06 (d, J=6.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 13.8, 22.4, 28.3, 28.4, 29.0, 29.1, 29.3, 31.3, 31.6, 36.6, 39.0. 126.9, 165.5, 189.9; IR (NaCl) 2924, 2853, 1672, 1466, 1439, 721, 505 cm⁻¹; MS (EI), $m/z = 339$ (M⁺, 10.2); HRMS calcd for C₂₁H₂₀OS 340.2803, found 340.2802.

4.2.5. 6-Methyl-3-phenylthio-2-heptenal (3e). [Z isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 0.72 (d, $J=6.3$ Hz, 6H), $1.33-1.35$ (m, 3H), 2.22 (t, $J=7.6$ Hz, 2H), 6.18 (d, J=6.8 Hz, 1H), 7.39–7.48 (m, 5H), 10.14 (d, J= 6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 22.1, 27.5, 35.1, 38.0, 127.4, 129.1, 129.4, 130.5, 134.1, 164.9, 190.0; IR (NaCl) 3059, 2955, 2930, 2869, 1670, 1581, 1572, 1538, 1468, 1440, 1385, 1156, 1097, 1069, 1023, 749, 704, 692 cm⁻¹; MS (EI), $m/z = 234$ (M⁺, 10.1). Anal. calcd for $C_{14}H_{18}OS: C, 71.75; H, 7.74.$ Found: C, 71.74; H, 7.88. [E] isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 0.97 (d, J=5.9 Hz, 6H), 1.63-1.72 (m, 3H), 2.78 (t, J= 7.8 Hz, 2H), 5.40 (d, $J=7.8$ Hz, 1H), 7.45–7.46 (m, 5H),

9.79 (d, J=7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 22.3, 28.1, 30.7, 40.5, 121.5, 128.4, 129.9, 130.3, 135.6, 171.5, 186.8; IR (NaCl) 3058, 2956, 2930, 2869, 2745, 1661, 1579, 1555, 1474, 1468, 1441, 1152, 1121, 848, 751, 706, 691 cm⁻¹; MS (EI), $m/z = 234$ (M⁺, 23). Anal. calcd for C14H18OS: C, 71.75; H, 7.74. Found: C, 71.45; H, 7.74.

4.2.6. 6-Hydroxy-3-phenylthio-2-hexenal (3f). [Z isomer] a pale red-brown oil; $\overline{1}$ H NMR (270 MHz, CDCl₃) δ 1.56 (br s, 1H), 1.72 (quint., $J=7.6$ Hz, 2H), 2.36 (t, $J=7.6$ Hz, 2H), 3.53 (t, J=7.6 Hz, 2H), 6.22 (d, J=6.8 Hz, 1H), $7.39-7.48$ (m, 5H), 10.16 (d, J=6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl3) ^d 31.4, 33.4, 61.4, 128.2, 129.2, 129.5, 134.0, 190.0; IR (NaCl) 3402, 2930, 1667, 1652, 1573, 1538, 1476, 1440, 1385, 1143, 1054, 749, 692 cm⁻¹; MS (EI), $m/z = 222$ (M⁺, 3.4). Anal. calcd for $C_{12}H_{14}O_2S$: C, 64.83; H, 6.35. Found: C, 64.87; H, 6.65. [E isomer] a pale red-brown oil; ¹H NMR $(270 \text{ MHz}, \text{CDCl}_3)$ δ 1.66 (br s, 1H), 2.01 (quint., J=7.3 Hz, 2H), 2.95 (t, $J=7.3$ Hz, 2H), 3.76 (t, $J=5.9$ Hz, 2H), 5.47 (d, $J=6.8$ Hz, 1H), 7.46 (m, 5H), 9.76 (d, $J=6.8$ Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 28.9, 33.3, 61.1, 122.0, 130.0, 130.4, 135.6, 187.3; IR (NaCl) 3420, 3058, 2931, 2872, 2360, 1651, 1574, 1475, 1441, 1397, 1281, 1148, 1068, 982, 918, 840, 752, 706, 691 cm⁻¹; MS (EI), $m/z=222$ (M⁺, 2.9); HRMS calcd for $C_{12}H_{14}O_2S$ 222.0715, found 222.0728.

4.2.7. 3-Phenyl-3-phenylthio-2-propenal (3g). [Z isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 6.55 (d, J= 6.8 Hz, 1H), 7.01–7.31 (m, 8H), 7.50–7.54 (m, 2H), 10.32 (d, J=6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 127.5, 128.4, 128.7, 129.0, 130.4, 131.25, 131.33, 132.5, 137.1, 159.1, 190.4; IR (NaCl) 3058, 2834, 1666, 1581, 1557, 1488, 1130, 765, 744, 691 cm⁻¹; MS (EI), $m/z = 240$ (M⁺, 100). Anal. calcd for C₁₅H₁₂OS: C, 74.97; H, 5.03; S, 13.34. Found: C, 74.74; H, 4.87; S, 13.39. [^E isomer] yellow oil; ¹ ¹H NMR (270 MHz, CDCl₃) δ 5.67 (d, J=7.8 Hz, 1H), 7.45–7.58 (m, 10H), 9.27 (d, J=7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl3) ^d 123.4, 128.6, 128.9, 129.5, 130.1, 130.3, 130.4, 134.7, 135.4, 169.1, 190.0; IR (NaCl) 3058, 1762, 1711, 1659, 1579, 1563, 1442, 1168, 1128, 909, 750, 735, 692 cm⁻¹; MS (EI), $m/z = 240$ (M⁺, 32); HRMS calcd for $C_{15}H_{12}OS$ 240.0609, found 240.0613.

4.2.8. 4-Phenyl-3-phenylthio-2-butenal (3h). [Z isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 3.52 (s, $2H$), 6.07 (d, J=6.3 Hz, 1H), 6.97–7.41 (m, 10H), 10.15 (d, $J=6.3$ Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 43.3, 127.1, 128.6, 128.7, 129.0, 129.3, 129.4, 130.2, 134.4, 136.4, 162.5, 189.9; IR (NaCl) 3060, 3028, 2828, 1669, 1571, 1536, 1494, 1476, 1453, 1440, 1136, 1069, 748, 696 cm⁻¹; MS (EI), $m/z = 254$ (M⁺, 62). Anal. calcd for C₁₆H₁₄OS: C, 75.55; H, 5.55. Found: C, 75.62; H, 5.61. [E isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 4.14 (s, 2H), 5.58 (d, J=7.8 Hz, 1H), 7.33–7.44 (m, 10H), 9.88 (d, J= 7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 37.9, 122.9, 127.2, 128.3, 128.9, 129.0, 130.0, 130.4, 135.6, 137.2, 167.9, 187.2; IR (NaCl) 3060, 3028, 2849, 2750, 1658, 1579, 1559, 1495, 1475, 1453, 1440, 1142, 750, 728, 692 cm⁻¹; MS (EI), $m/z = 254$ (M⁺, 60). Anal. calcd for $C_{16}H_{14}$ OS: C, 75.55; H, 5.55. Found: C, 75.28; H, 5.69.

4.2.9. 6-Cyano-3-phenylthio-2-hexenal (3i). [Z isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 1.83

(quint., $J=7.3$ Hz, 2H), 2.25 (t, $J=7.1$ Hz, 2H), 2.41 (t, $J=$ 7.3 Hz, 2H), 6.23 (d, $J=6.4$ Hz, 1H), 7.42–7.50 (m, 5H), 10.16 (d, J=6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 16.1, 24.1, 35.4, 118.5, 128.8, 129.4, 129.6, 129.8, 133.8, 160.5, 189.6; IR (NaCl) 3058, 2940, 2834, 2246, 1669, 1582, 1572, 1538, 1477, 1456, 1440, 1385, 1175, 1138, 1078, 1024, 751, 704, 693 cm⁻¹; MS (EI), $m/z = 231$ (M⁺, 20); HRMS calcd for $C_{13}H_{13}NOS$ 231.0718, found 231.0715. [E isomer] a pale red-brown oil; ¹H NMR $(270 \text{ MHz}, \text{CDCl}_3)$ δ 2.12 (quint., J=7.3 Hz, 2H), 2.51 (t, $J=7.1$ Hz, 2H), 2.97 (t, $J=7.6$ Hz, 2H), 5.51 (d, $J=6.8$ Hz, 1H), 7.48 (m, 5H), 9.73 (d, J=6.8 Hz, 1H); ¹³C NMR $(68 \text{ MHz}, \text{CDCl}_3)$ δ 16.7, 26.1, 31.3, 118.7, 122.3, 129.3, 130.1, 130.6, 135.5, 167.0, 186.2; IR (NaCl) 3058, 2938, 2857, 2247, 1765, 1657, 1580, 1556, 1475, 1441, 1182, 1144, 753, 733, 706, 692 cm⁻¹; MS (EI), $m/z = 231$ (M⁺, 21); HRMS calcd for $C_{13}H_{13}NOS$ 231.0718, found 231.0715.

4.2.10. 3-Phenylthio-2-nonen-8-ynal (3j). [Z isomer] a pale red-brown oil; ¹H NMR (270 MHz, CDCl₃) δ 1.39 (quint., $J=7.3$ Hz, 2H), 1.60 (quint., $J=7.4$ Hz, 2H), 1.93 (t, $J=2.7$ Hz, 1H), $2.06-2.12$ (t-d, $J=4.4$, 2.4 Hz, 2H), 2.25 (t, $J=7.6$ Hz, 2H), 6.19 (d, $J=6.8$ Hz, 1H), 7.39–7.49 (m, 5H), 10.15 (d, J=6.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 18.0, 27.4, 27.6, 36.5, 68.7, 83.7, 127.8, 129.1, 129.4, 130.4, 134.0, 163.6, 190.0; IR (NaCl) 3296, 2940, 2861, 1667, 1652, 1574, 1538, 1478, 1462, 1441, 1384, 1167, 1133, 751, 623 cm⁻¹; MS (EI), $m/z = 244$ (M⁺, 0.7); HRMS calcd for $C_{15}H_{16}OS$ 244.0922, found 244.0949. [*E* isomer] yellow oil; ¹H NMR (270 MHz, CDCl₃) δ 1.66 (quint., J=7.6 Hz, 2H), 1.90 (quint., $J=7.3$ Hz, 2H), 1.99 (t, $J=2.5$ Hz, 1H), $2.25-2.30$ (t-d, J=4.4, 2.9 Hz, 2H), 2.83 (t, J=7.6 Hz, 2H), 5.43 (d, J=8.0 Hz, 1H), 7.45–7.46 (m, 5H), 9.79 (d, J= 7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 18.1, 27.8, 30.0, 32.0, 69.0, 83.6, 122.0, 128.3, 130.0, 130.3, 135.6, 170.4, 186.8; IR (NaCl) 3300, 2941, 2861, 1658, 1652, 1580, 1475, 1459, 1441, 1168, 1142, 753, 733, 691, 639 cm⁻¹; MS (EI), $m/z = 244$ (M⁺, 0.5); HRMS calcd for C₁₅H₁₆OS 244.0922, found 244.0935.

4.3. Procedure for the synthesis of complex 8

In a two-necked flask equipped with a magnetic stirring bar under an argon atmosphere were placed $RhH(CO)(PPh₃)₃$ (135 mg, 1.47 mmol), acetonitrile (3 mL), and benzenethiol (16.3 mg, 1.48 mmol). The mixture was stirred for 2 h at 15°C. The precipitate was filtered and washed with acetonitrile to give $Rh(SPh)(CO)(PPh_3)$ ₂ (8) (93.2 mg) as a yellow solid. Complex 8. Anal. calcd for $C_{43}H_{37}OP_2RhS$: C, 65.99; H, 4.76; S, 4.10. Found: C, 65.80; H, 4.69; S, 4.10.

4.4. Procedure for thioformylation of 1-octyne with carbon monoxide and thiols by using complex 8

In a 50 mL stainless steel autoclave with a magnetic stirring bar under argon atmosphere were placed complex 8 (47.5 mg, 3 mol%), acetonitrile (2 mL), 1-octyne (312 mg, 2.8 mmol), and benzenethiol (213 mg, 1.9 mmol). Carbon monoxide was purged for three times and then charged at 3 MPa. The reaction was conducted with magnetic stirring for 5 h upon heating at 120°C. After carbon monoxide was purged, the resulting mixture was filtered through Celite and

concentrated in vacuo to afford $3a$ (66%, determined by ¹H) NMR).

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1. (a) Ojima, I. The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 1998; Vol. 2, p 1687, part 2. (b) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: Chichester, 1995; pp 488–497. (c) Hiyama, T.; Kusumoto, T. Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 8, p 763. (d) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1989; p 1479, part 2. (e) Hiyama, T.; Shirakawa, E. Top. Curr. Chem. 2002, 219, 61. (f) Recatto, C. A. Aldrichim. Acta 1995, 28, 85. (g) Horn, K. A. Chem. Rev. 1995, 95, 1317. (h) Murai, S.; Chatani, N. J. Synth. Org. Chem. Jpn 1993, 51, 421. (i) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263.
- 2. (a) William, J. S. The Stille Reaction; Wiley: New York, 1998. (b) Fugami, K.; Kosugi, M. Top. Curr. Chem. 2002, 219, 87. (c) William, J. S. Org. React. 1997, 50, 1. (d) Harrison, P. G. Chemistry of Tin; Blackie and Son: New York, 1989. (e) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworths: London, 1987. (f) Mitchell, T. N. Synthesis 1992, 803. (g) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
- 3. (a) Miyaura, N. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; pp 1–45. (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11. (c) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957. (d) Suzuki, A.; Miyaura, N. J. Synth. Org. Chem. Jpn 1993 , 51, 1043. (e) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
- 4. (a) Roberto, A. S.-D. Organometallic Modeling of the Hydrosulfurization and Hydrodenitrogenation Reaction; Kluwer Academic: Dordrecht, 2002. (b) Weber, T.; Prins, R.; Santen, R. A. Transition Metal Sulphides Chemistry and Catalysis; Kluwer Academic: Dordrecht, 1997. (c) Stiefel, E. I.; Matsumoto, K. Transition Metal Sulfur Chemistry Biological and Industrial Significance; American Chemical Society: Washington, DC, 1996.
- 5. (a) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796. (b) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 5902.
- 6. (a) Reppe, V. W. Liebigs Ann. 1953, 582, 1. (b) Reppe, V. W.; Kröper, H. *Liebigs Ann.* **1953**, 582, 38. (c) Holmquist, H. E.; Carnahan, J. E. J. Org. Chem. 1960, 25, 2240. (d) McDonald, J. W.; Corbin, J. L.; Newton, W. E. Inorg. Chem. 1976, 15, 2056. (e) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 43. (f) Murahashi, S.-I.; Yamamura, M.; Yanagisawa,

K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408. (g) Okamura, H.; Takei, H. Tetrahedron Lett. 1979, 3425. (h) Dzhemilev, U. M. Izv. Akad. Nauk SSSR, Ser, Khim. 1981, 11, 2655. (i) McKervey, M. A.; Ratananukul, P. Tetrahedron Lett. 1982, 23, 2509. (j) Hutchins, R. O.; Learn, K. J. Org. Chem. 1982, 47, 4380. (k) Shim, S. C.; Antebi, S.; Alper, H. J. Org. Chem. 1985, 50, 147. (l) Antebi, S.; Alper, H. Tetrahedron Lett. 1985, 26, 2609. (m) Shim, S. C.; Antebi, S.; Alper, H. Tetrahedron Lett. 1985, 26, 1935. (n) Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol, H. J. Org. Chem. 1986, 51, 875. (o) Auburn, P. R.; Whelan, J.; Bosnich, B. J. Chem. Soc., Chem. Commun. 1986, 146. (p) Antebi, S.; Alper, H. Organometallics 1986, 5, 596. (q) Antebi, S.; Alper, H. Can. J. Chem. 1986, 64, 2010. (r) Calet, S.; Alper, H. Tetrahedron Lett. 1986, 27, 3573. (s) Calet, S.; Alper, H.; Petrignani, J.-F.; Arzoumanian, H. Organometallics 1987, 6, 1625. (t) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1987, 28, 6321. (u) Wang, M.-D.; Calet, S.; Alper, H. J. Org. Chem. 1989, 54, 20. (v) Capita, A.; Rossi, R.; Scamuzzi, B. Tetrahedron Lett. 1989, 30, 2699. (w) Luh, T.-Y.; Ni, Z.-J. Synthesis 1990, 89. (x) Wenkert, E.; Chianelli, D. J. Chem. Soc., Chem. Commun. 1991, 627. (y) Goux, C.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1992, 33, 8099.

- 7. Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108.
- 8. (a) Ohe, K.; Takahashi, H.; Uemura, S.; Sugita, N. J. Organomet. Chem. 1987, 326, 35. (b) Takahashi, H.; Ohe, K.; Uemura, S.; Sugita, N. J. Organomet. Chem. 1987, 334, C43.
- 9. (a) Ogawa, A. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Vol. II, p 2841 Chapter VII. 6. (b) El Ali, B.; Alper, H. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Vol. II, p 2333 Chapter VI. 6. (c) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (d) Ogawa, A.; Hirao, T. Science of Synthesis; Lautens, M., Trost, B. M., Eds.; Georg Thieme: Stuttgart, 2001; Vol. 1, p 389. (e) Takacs, J. M.; Vayalakkada, S.; Jiang, X. Science of Synthesis; Lautens, M., Trost, B. M., Eds.; Georg Thieme: Stuttgart, 2001; Vol. 1, p 265. (f) Takacs, J. M.; Jiang, X.; Vayalakkada, S. Science of Synthesis; Lautens, M., Trost, B. M., Eds.; Georg Thieme: Stuttgart, 2001; Vol. 1, p 63. (g) Lautens, M. Science of Synthesis; Lautens, M., Trost, B. M., Eds.; Georg Thieme: Stuttgart, 2001; Vol. 1, p 1. (h) Kondo, T. J. Synth. Org. Chem., Jpn 2001, 59, 170. (i) Ogawa, A. J. Organomet. Chem. 2000, 611, 463. (j) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; p 217. (k) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. (l) Han, L.-B.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1999, 395. (m) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (n) Ogawa, A.; Sonoda, N. J. Synth. Org. Chem., Jpn 1996, 54, 894. (o) Ogawa, A.; Sonoda, N. J. Synth. Org. Chem., Jpn 1993, 51, 815.
- 10. (a) Ishiyama, T.; Nishijima, K.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 7219. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- 11. (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1998, 120, 8249. (b) Han, L.-B.; Tanaka, M. Chem. Lett. 1999, 863. (c) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899.
- 12. (a) Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 482. (b) Kondo, T.; Morisaki, Y.;

Uenoyama, S.; Wada, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 8657. (c) Kondo, T.; Kanda, Y.; Baba, A.; Fukuda, K.; Nakamura, A.; Wada, K.; Morisaki, Y.; Mitsudo, T. J. Am. Chem. Soc. 2002, 124, 12960.

13. (a) Keim, W.; Herwig, J. J. Chem. Soc., Chem. Commun. 1993, 1592. (b) Khumtaveeporn, K.; Alper, H. J. Org. Chem. 1994, 59, 1414. (c) Bäckvall, J.-E.; Ericsson, A. J. Org. Chem. 1994, 59, 5850. (d) Khumtaveeporn, K.; Alper, H. J. Am. Chem. Soc. 1994, 116, 5662. (e) Crudden, C. M.; Alper, H. J. Org. Chem. 1995, 60, 5579. (f) Khumtaveeporn, K.; Alper, H. J. Chem. Soc., Chem. Commun. 1995, 917. (g) Ogawa, A.; Kawakami, J.; Sonoda, N.; Hirao, T. J. Org. Chem. 1996, 61, 4161. (h) Kuniyasu, H.; Sugoh, K.; Su, M. S.; Kurosawa, H. J. Am. Chem. Soc. 1997, 119, 4669. (i) Ogawa, A.; Kuniyasu, H.; Sonoda, N.; Hirao, T. J. Org. Chem. 1997, 62, 8361. (j) Xiao, W.-J.; Alper, H. J. Org. Chem. 1997, 62, 3422. (k) Ogawa, A.; Kawabe, K.; Kawakami, J.; Mihara, M.; Ikeda, T.; Hirao, T.; Sonoda, N. Organometallics 1998, 17, 3111. (l) Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1998, 63, 2609. (m) Xiao, W.-J.; Alper, H. J. Org. Chem. 1998, 63, 7939. (n) Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.; Sugoh, K.; Kurosawa, H. J. Org. Chem. 1999, 64, 7305. (o) Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1999, 64, 2080. (p) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (q) Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138. (r) Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351. (s) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am.

Chem. Soc. 2001, 123, 5108. (t) Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 763. (u) Xiao, W.-J.; Alper, H. J. Org. Chem. 2001, 66, 6229. (v) Ali, B. E.; Tijani, J.; El-Ghanam, A.; Fettouhi, M. Tetrahedron Lett. 2001, 42, 1567. (w) Ohtaka, A.; Kuniyasu, H.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 14324. (x) Ananikov, V. P.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. Organometallics 2003, 22, 1414. (y) Arisawa, M.; Suwa, A.; Fujimoto, K.; Yamaguchi, M. Adv. Synth. Catal. 2003, 345, 560. (z) Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2003, 125, 6624.

- 14. (a) Ogawa, A.; Takeba, M.; Kawakami, J.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1995, 117, 7564. (b) Ogawa, A.; Kawakami, J.; Mihara, M.; Ikeda, T.; Sonoda, N.; Hirao, T. J. Am. Chem. Soc. 1997, 119, 12380.
- 15. Matsuda, I.; Fukuta, Y.; Tsuchihashi, T.; Nagashima, H.; Itoh, K. Organometallics 1997, 16, 4327.
- 16. Nakatani, S.; Yoshida, J.; Isoe, S. J. Chem. Soc., Chem. Commun. 1992, 880.
- 17. (a) Bath, S. S.; Vaska, L. J. Am. Chem. Soc. 1963, 85, 3500. (b) Evans, D.; Yagupsky, G.; Wilkinson, G. J. Chem. Soc. A 1968, 2660.
- 18. (a) Bolton, E. S.; Havlin, R.; Knox, G. R. J. Organomet. Chem. 1969, 18, 153. (b) Vaska, L.; Jun, J. P. J. Chem. Soc., Chem. Commun. 1971, 418. (c) Schiavon, G.; Zecchin, S.; Pilloni, G.; Martell, M. J. Inorg. Nucl. Chem. 1977, 39, 115.
- 19. Kuniyasu, H.; Ogawa, A.; Sonoda, N. Tetrahedron Lett. 1993, 2491.